MASTER OF APPLIED BIOENGINEERING

GET ON THE FAST TRACK TO INVENTING THE FUTURE OF MEDICINE

SOLVE TODAY’S HEALTH CARE CHALLENGES. ENGINEER SOLUTIONS TO UNMET CLINICAL NEEDS.

Earn your degree in just one year, full time at the University of Washington Seattle campus. Enter the workforce prepared to respond to market-based demands of industry and medicine.

The Master of Applied Bioengineering is a new degree that integrates engineering design and entrepreneurship education to creatively address unresolved clinical issues. Students will:

- Identify real-world health care needs alongside UW Medicine clinicians and faculty.
- Gain technical expertise in medical imaging, biomaterials, molecular bioengineering or regenerative medicine.
- Learn about business issues specific to biomedical technology commercialization.
- Complete a health care-focused team design project, or full-time industry internship.

TAKE YOUR NEXT STEP FORWARD: APPLY TODAY

APPLICATION DEADLINE: JANUARY 31
PROGRAM STARTS IN LATE AUGUST

Strong candidates will hold a B.S. or higher in an engineering, biomedical or other interdisciplinary field. International students are encouraged to apply.

The estimated tuition and fees for 2016-17 are $30,000 for Washington state residents and $36,000 for nonresidents

The Master of Applied Bioengineering program is financial aid and I-20 eligible.

VISIT US ONLINE FOR THE LATEST INFORMATION ABOUT DEADLINES AND MORE!

HTTP://DEPTS.WASHINGTON.EDU/BIOE/ACADEMIC-PROGRAMS/GRADUATE/MAB/
The Master of Applied Bioengineering (MAB) is a one year project-based daytime degree program in biomedical engineering. Students enroll full-time in this non-thesis graduate degree program.

The clinical practicum offers MAB students a concentrated clinical shadowing opportunity and provides them intensive mentoring by the clinical directors. The MAB curriculum is structured to help students identify unmet needs in the clinic, select projects suitable for master's level team design, propose an engineering solution, implement a proof-of-principle prototype and prepare a business plan. The sequence of courses is followed by a summer capstone experience, which may be an industry internship or biodesign project.

The MAB program is writing-intensive and professional skills such as resumes, portfolios, interviewing and job search are integrated into the program.

CURRICULUM & TIMELINE

EARLY FALL:
- Bioengineering Clinical Practicum (4 cr)

AUTUMN QUARTER:
- Design Skills I: Clinical Needs Evaluation (4 cr)
- Technology Commercialization (4 cr)
- Technical Concentration Electives (6 cr)

WINTER QUARTER:
- Design Skills II: Design Proposal (4 cr)
- Biomedical Entrepreneurship (4 cr)
- Technical Concentration electives (6 cr)
- Business Plan Practicum (2 cr)
- Bioengineering Departmental Seminar (1 cr)

SPRING QUARTER:
- Design Skills III: Project Implementation (3 cr)
- Bioengineering Departmental Seminar (1 cr)
- Technical Concentration Electives (6 cr)
- Business Plan Competition (optional)

SUMMER QUARTER:
- Advanced Capstone Design Project or Industry Internship (10 cr)

TECHNICAL CONCENTRATION AREAS

Each MAB student will demonstrate competency in a Technical Concentration area. The available Technical Concentration areas may change depending on the electives offered and industry trends, and will be established prior to the application deadline.

- **BIOMEDICAL IMAGING**
 - Developing methods and devices that enhance biomedical imaging and improve the diagnosis and characterization of disease

- **MOLECULAR BIOENGINEERING & BIOMATERIALS**
 - Exploring how molecular-level interactions drive cellular behavior and designing new molecular systems for medical applications

- **OPTIMAL GLOBAL HEALTH FOCUS**
 - Engineering approaches for the repair and replacement of human tissues damaged by injury, illness and aging

- **REGENERATIVE MEDICINE & BIOMATERIALS**

"As one of the first bioengineering departments in the nation jointly housed in Engineering and Medicine, we are a recognized leader in addressing unmet clinical needs through biomedical education, research and technology transfer. Our culture of collaboration with interdisciplinary partners enables us to solve today's biggest health care challenges, here at home and around the world."

Cecilia Giachelli, W. Hunter and Dorothy L. Simpson Endowed Chair